22147210

MATHEMATICS

HIGHER LEVEL
PAPER 3 - STATISTICS AND PROBABILITY
Thursday 15 May 2014 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 14]

The random variable X has probability distribution $\operatorname{Po}(8)$.
(a) (i) Find $\mathrm{P}(X=6)$.
(ii) Find $\mathrm{P}(X=6 \mid 5 \leq X \leq 8)$.
(b) \bar{X} denotes the sample mean of $n>1$ independent observations from X.
(i) Write down $\mathrm{E}(\bar{X})$ and $\operatorname{Var}(\bar{X})$.
(ii) Hence, give a reason why \bar{X} is not a Poisson distribution.
(c) A random sample of 40 observations is taken from the distribution for X.
(i) Find $\mathrm{P}(7.1<\bar{X}<8.5)$.
(ii) Given that $\mathrm{P}(|\bar{X}-8| \leq k)=0.95$, find the value of k.
2. [Maximum mark: 16]

The following table gives the average yield of olives per tree, in kg , and the rainfall, in cm , for nine separate regions of Greece. You may assume that these data are a random sample from a bivariate normal distribution, with correlation coefficient ρ.

Rainfall (x)	11	10	15	13	7	18	22	20	28
Yield (y)	56	53	67	61	54	78	86	88	78

A scientist wishes to use these data to determine whether there is a positive correlation between rainfall and yield.
(a) State suitable hypotheses.
(b) Determine the product moment correlation coefficient for these data.
(c) Determine the associated p-value and comment on this value in the context of the question.
(d) Find the equation of the regression line of y on x.
(e) Hence, estimate the yield per tree in a tenth region where the rainfall was 19 cm .
(f) Determine the angle between the regression line of y on x and that of x on y. Give your answer to the nearest degree.
3. [Maximum mark: 14]
(a) Consider the random variable X for which $\mathrm{E}(X)=a \lambda+b$, where a and b are constants and λ is a parameter.

Show that $\frac{X-b}{a}$ is an unbiased estimator for λ.
(b) The continuous random variable Y has probability density function

$$
f(y)=\left\{\begin{aligned}
\frac{2}{9}(3+y-\lambda), & \text { for } \lambda-3 \leq y \leq \lambda \\
0, & \text { otherwise }
\end{aligned}\right.
$$

where λ is a parameter.
(i) Verify that $f(y)$ is a probability density function for all values of λ.
(ii) Determine $\mathrm{E}(Y)$.
(iii) Write down an unbiased estimator for λ.
4. [Maximum mark: 16]

Consider the random variable $X \sim \operatorname{Geo}(p)$.
(a) State $\mathrm{P}(X<4)$.
(b) Show that the probability generating function for X is given by $G_{X}(t)=\frac{p t}{1-q t}$, where $q=1-p$.

Let the random variable $Y=2 X$.
(c) (i) Show that the probability generating function for Y is given by $G_{Y}(t)=G_{X}\left(t^{2}\right)$.
(ii) By considering $G_{Y}^{\prime}(1)$, show that $\mathrm{E}(Y)=2 \mathrm{E}(X)$.

Let the random variable $W=2 X+1$.
(d) (i) Find the probability generating function for W in terms of the probability generating function of Y.
(ii) Hence, show that $\mathrm{E}(W)=2 \mathrm{E}(X)+1$.

